Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 226, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388642

RESUMO

The present study describes the kidney transcriptome of Labeo rohita, a freshwater fish, exposed to gradually increased salinity concentrations (2, 4, 6 and 8ppt). A total of 10.25 Gbps data was generated, and a suite of bioinformatics tools, including FEELnc, CPC2 and BLASTn were employed for identification of long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs). Our analysis revealed a total of 170, 118, 99, and 269 differentially expressed lncRNA and 120, 118, 99, and 124 differentially expressed miRNAs in 2, 4, 6 and 8 ppt treatment groups respectively. Two competing endogenous RNA (ceRNA) networks were constructed i.e. A* ceRNA network with up-regulated lncRNAs and mRNAs, down-regulated miRNAs; and B* ceRNA network vice versa. 2ppt group had 131 and 83 lncRNA-miRNA-mRNA pairs in A* and B* networks, respectively. 4ppt group featured 163 pairs in A* network and 191 in B* network, while the 6ppt had 103 and 105 pairs. 8ppt group included 192 and 174 pairs. These networks illuminate the intricate RNA interactions in freshwater fish to varying salinity conditions.


Assuntos
Cipriniformes , MicroRNAs , RNA Longo não Codificante , RNA Mensageiro , Animais , Redes Reguladoras de Genes , Rim , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma , Cipriniformes/genética , Salinidade
2.
Sci Total Environ ; 914: 169911, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185156

RESUMO

Herbicide application is a common practice in intensive agriculture. However, accumulating herbicide residues in the ecosystem affects important soil attributes. The effect of two herbicides, pendimethalin and pretilachlor, on soil biochemical properties and microbial community composition was studied in a transplanted paddy field. Results reveal a gradual decline in herbicide residue up to 60 days after application. Changes in soil microbiological and biochemical properties (microbial biomass, enzymes, respiration, etc.) showed an inconsistent pattern across the treatments. Quantitative polymerase chain reaction analysis showed the archaeal, bacterial and fungal populations to be of higher order in control soil compared to the treated one. Amplicon sequencing (16S rRNA and ITS genes) exhibited that besides the unclassified genera, ammonia-oxidizing Crenarchaeota and the group represented by Candidatus Nitrososphaera were dominant in both the control and treated samples. Other archaeal genera viz. Methanosarcina and Bathyarchaeia showed a slight decrease in relative abundance of control (0.5 %) compared to the treated soil (0.7 %). Irrespective of treatments, the majority of bacterial genera comprised unclassified and uncultured species, accounting for >64-75 % in the control group and over 78.29 % in the treated samples. Members of Vicinamibacteraceae, Bacillus and Bryobacter were dominant in control samples. Dominant fungal genera belonging to unclassified groups comprised Curvularia, Aspergillus, and Emericellopsis in the control group, whereas Paraphysoderma and Emericellopsis in the herbicide-treated groups. Inconsistent response of soil properties and microbial community composition is evident from the present study, suggesting that the recommended dose of herbicides might not result in any significant change in microbial community composition. The findings of this investigation will help in the formulation of a framework for risk assessment and maintaining sustainable rice cultivation in herbicide- amended soils.


Assuntos
Herbicidas , Microbiota , Oryza , Solo/química , Herbicidas/análise , Oryza/genética , RNA Ribossômico 16S/genética , Archaea/genética , Bactérias/genética , Acidobacteria/genética , Microbiologia do Solo
3.
Oncol Res Treat ; 47(1-2): 10-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38008084

RESUMO

INTRODUCTION: Oncolytic virotherapy is a novel strategy for cancer treatment in humans and companion animals. Canine distemper virus (CDV) is known to induce apoptosis in tumor cells, thus serving as a potential candidate for oncolytic therapy. However, the mechanism of viral oncolytic activity is less studied and varies depending on the type of cancer and cell lines. METHODS: In the present study, the susceptibility of the MCF-7 cell line to CDV infection was assessed using the CDV strain, which was confirmed previously through sequence analysis in the Vero cell line. The impact of CDV infection on cell proliferation and apoptosis was studied by evaluating the expression of four target genes including the myeloid cell leukemia 1 (MCL-1), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), transcription factor (SP1), and DNA (cytosine-5)-methyltransferase 3A (DNMT3A). RESULTS: CDV replication in the cells induced cytopathic effect and decreased in the cell proliferation rates compared to the uninfected control. MCL-1, SP1, and PIK3R1 gene expression was down-regulated, while the expression of DNMT3A was up-regulated 3 days post-infection. The expression levels of the target genes suggest that CDV may be inducing the intrinsic apoptotic pathway in the cancer cell line. CONCLUSION: Overall, the results strongly propose CDV strain as a potential candidate for cancer therapy after detailed studies.


Assuntos
Neoplasias da Mama , Vírus da Cinomose Canina , Animais , Chlorocebus aethiops , Humanos , Feminino , Vírus da Cinomose Canina/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides , Células Vero , Apoptose , Neoplasias da Mama/terapia
4.
Front Plant Sci ; 14: 1204828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915505

RESUMO

Cumin (Cuminum cyminum L.), an important spice crop belonging to the Apiaceae family is infected by Fusarium oxysporum f. sp. cumini (Foc) to cause wilt disease, one of the most devastating diseases of cumin adversely affects its production. As immune responses of cumin plants against the infection of Foc are not well studied, this research aimed to identify the genes and pathways involved in responses of cumin (cv. GC-2, GC-3, GC-4, and GC-5) to the wilt pathogen. Differential gene expression analysis revealed a total of 2048, 1576, 1987, and 1174 differentially expressed genes (DEGs) in GC-2, GC-3, GC-4, and GC-5, respectively. In the resistant cultivar GC-4 (resistant against Foc), several important transcripts were identified. These included receptors, transcription factors, reactive oxygen species (ROS) generating and scavenging enzymes, non-enzymatic compounds, calcium ion (Ca2+) transporters and receptors, R-proteins, and PR-proteins. The expression of these genes is believed to play crucial roles in conferring resistance against Foc. Gene ontology (GO) analysis of the up-regulated DEGs showed significant enrichment of 19, 91, 227, and 55 biological processes in GC-2, GC-3, GC-4, and GC-5, respectively. Notably, the resistant cultivar GC-4 exhibited enrichment in key GO terms such as 'secondary metabolic process', 'response to reactive oxygen species', 'phenylpropanoid metabolic process', and 'hormone-mediated signaling pathway'. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the enrichment of 28, 57, 65, and 30 pathways in GC-2, GC-3, GC-4, and GC-5, respectively, focusing on the up-regulated DEGs. The cultivar GC-4 showed enrichment in pathways related to steroid biosynthesis, starch and sucrose metabolism, fatty acid biosynthesis, butanoate metabolism, limonene and pinene degradation, and carotenoid biosynthesis. The activation or up-regulation of various genes and pathways associated with stress resistance demonstrated that the resistant cultivar GC-4 displayed enhanced defense mechanisms against Foc. These findings provide valuable insights into the defense responses of cumin that could contribute to the development of cumin cultivars with improved resistance against Foc.

5.
J Biomol Struct Dyn ; : 1-16, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993988

RESUMO

Globally, dental caries is a prevalent oral disease caused by cariogenic bacteria, primarily Streptococcus mutans. It establishes caries either through sucrose-dependent (via glycosyltransferases) or through sucrose-independent (via surface adhesins Antigen I/II) mechanism. Sortase A (srtA) attaches virulence-associated adhesins to host tissues. Because of their importance in the formation of caries, targeting these proteins is decisive in the development of new anticariogenic drugs. High-throughput virtual screening with LIPID MAPS -a fatty acid database was performed. The selected protein-ligand complexes were subjected to molecular dynamics simulation (MDs). The Binding Free Energy of complexes was predicted using MM/PBSA. Further, the drug-likeness and pharmacokinetic properties of ligands were also analyzed. Out of 46,200 FAs scrutinized virtually against the three protein targets (viz., GtfC, Ag I/II and srtA), top 5 FAs for each protein were identified as the best hit based on interaction energies viz., hydrogen bond numbers and hydrophobic interaction. Further, two common FAs (LMFA01050418 and LMFA01040045) that showed high binding affinity against Ag I/II and srtA were selected for MDs analysis. A 100ns MDs unveiled a stable conformation. Results of Rg signified that FAs does not induce significant structural & conformational changes. SASA indicated that the complexes maintain higher thermodynamic stability during MDs. The predicted binding free energy (MM/PBSA) of complexes elucidated their stable binding interaction. ADME analysis suggested the FAs are biologically feasible as therapeutic candidates. Overall, the presented in silico data is the first of its kind in delineating FAs as promising anticaries agents of future.Communicated by Ramaswamy H. Sarma.

6.
Arch Microbiol ; 206(1): 6, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015256

RESUMO

Paracoccus species are metabolically versatile gram-negative, aerobic facultative methylotrophic bacteria showing enormous promise for environmental and bioremediation studies. Here we report, the complete genome analysis of Paracoccus sp. strain DMF (P. DMF) that was isolated from a domestic wastewater treatment plant in Kanpur, India (26.4287 °N, 80.3891 °E) based on its ability to degrade a recalcitrant organic solvent N, N-dimethylformamide (DMF). The results reveal a genome size of 4,202,269 base pairs (bp) with a G + C content of 67.9%. The assembled genome comprises 4141 coding sequences (CDS), 46 RNA sequences, and 2 CRISPRs. Interestingly, catabolic operons related to the conventional marine-based methylated amines (MAs) degradation pathway were functionally annotated within the genome of an obligated aerobic heterotroph that is P. DMF. The genomic data-based characterization presented here for the novel heterotroph P. DMF aims to improve the understanding of the phenotypic gene products, enzymes, and pathways involved with greater emphasis on facultative methylotrophic motility-based latent pathogenicity.


Assuntos
Paracoccus , Paracoccus/genética , Dimetilformamida , Bactérias , Genômica , Água
7.
Front Genet ; 14: 1209843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719712

RESUMO

Introduction: Brain being the master regulator of the physiology of animal, the current study focuses on the gene expression pattern of the brain tissue with special emphasis on regulation of growth, developmental process of an organism and cellular adaptation of Labeo rohita against unfavourable environmental conditions. Methods: RNA-seq study was performed on collected brain samples at 8ppt salt concentration and analyzed for differential gene expression, functional annotation and miRNA-mRNA regulatory network. Results: We found that 2450 genes were having significant differential up and down regulation. The study identified 20 hub genes based on maximal clique centrality algorithm. These hub genes were mainly involved in various signaling pathways, energy metabolism and ion transportation. Further, 326 up and 1214 down regulated genes were found to be targeted by 7 differentially expressed miRNAs i.e., oni-miR-10712, oni-miR-10736, ssa-miR-221-3p, ssa-miR-130d-1-5p, ssa-miR-144-5p and oni-miR-10628. Gene ontology analysis of these differentially expressed genes led to the finding that these genes were involved in signal transduction i.e., calcium, FOXO, PI3K-AKT, TGF-ß, Wnt and p53 signalling pathways. Differentially expressed genes were also involved in regulation of immune response, environmental adaptation i.e., neuroactive ligand-receptor interaction, ECM-receptor interaction, cell adhesion molecules and circadian entrainment, osmoregulation and energy metabolism, which are critical for salinity adaptation. Discussion: The findings of whole transcriptomic study on brain deciphered the miRNA-mRNA interaction patterns and pathways associated with salinity adaptation of L. rohita.

8.
Front Microbiol ; 14: 1137611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275132

RESUMO

The aim of this study was to isolate and characterize bovine-vaginal probiotics genotypically and phenotypically using in silico and evaluate their in vivo performance in buffaloes with endometritis. For the in vitro isolation and characterization, vaginal swabs were collected from 34 cows and 17 buffaloes, and 709 primary bacterial isolates with probiotic activity were obtained using MRS agar media. Two isolates Lactiplantibacillus plantarum KUGBRC (LPKUGBRC) and Pediococcus pentosaceus GBRCKU (PPGBRCKU) demonstrated optimum in vitro probiotic activities as compared to Lacticaseibacillus rhamnosus GG including, acid production, secretion of fatty acids and exopolysaccharide, cell surface hydrophobicity, self-aggregating and co-aggregating capacity with pathogens, anti-microbial activity and bacteriocin-like compounds against pathogens Escherichia coli and Staphylococcus aureus in cell-free supernatant and absence of hemolytic activity. Their phenotypic capacity was confirmed by analyzing the whole genome sequencing data and identifying genes and pathways associated with probiotic properties. These probiotic isolates have shown no virulence genes were discovered in their genomic study. In vivo study of 92 buffaloes suffering from clinical endometritis with purulent cervico-vaginal mucus (CVM) were randomly allocated 40 × 108 CFU/ml LPKUGBRC and PPGBRCKU and 40 ml Normal saline. The LPKUGBRC reduced the duration between administration of probiotic to induction of healthy estrus significantly. However, no effect was observed on pregnancy rate. These results suggest that LPKUGBRC and PPGBRCKU probiotic bacteria demonstrate probiotic efficiency and adaptability. Further sourced from the same niche as the targeted infection, they offer a distinct advantage in targeting the specific microbial population associated with endometritis. The findings of this study highlight the potential of LPKUGBRC and PPGBRCKU probiotics in treating endometritis and suggest further exploration of their clinical applications.

9.
BMC Genomics ; 24(1): 336, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337199

RESUMO

BACKGROUND: Labeo rohita is the most preferred freshwater carp species in India. The concern of increasing salinity concentration in freshwater bodies due to climate change may greatly impact the aquatic environment. Gills are one of the important osmoregulatory organs and have direct contact with external environment. Hence, the current study is conducted to understand the gill transcriptomic response of L. rohita under hypersalinity environment. RESULTS: Comprehensive analysis of differentially expressed long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs was performed in gills of L. rohita treated with 2, 4, 6 and 8ppt salinity concentrations. Networks of lncRNA-miRNA-mRNA revealed involvement of 20, 33, 52 and 61 differentially expressed lncRNAs, 11, 13, 26 and 21 differentially expressed miRNAs in 2, 4, 6 and 8ppt groups between control and treatment respectively. These lncRNA-miRNA pairs were regulating 87, 214, 499 and 435 differentially expressed mRNAs (DE mRNAs) in 2, 4, 6 and 8ppt treatments respectively. Functional analysis of these genes showed enrichment in pathways related to ion transportation and osmolyte production to cope with induced osmotic pressure due to high salt concentration. Pathways related to signal transduction (MAPK, FOXO and phosphatidylinositol signaling), and environmental information processing were also upregulated under hypersalinity. Energy metabolism and innate immune response pathways also appear to be regulated. Protein turnover was high at 8ppt as evidenced by enrichment of the proteasome and aminoacyl tRNA synthesis pathways, along with other enriched KEGG terms such as apoptosis, cellular senescence and cell cycle. CONCLUSION: Altogether, the RNA-seq analysis provided valuable insights into competitive endogenous (lncRNA-miRNA-mRNA) regulatory network of L. rohita under salinity stress. L. rohita is adapting to the salinity stress by means of upregulating protein turnover, osmolyte production and removing the damaged cells using apoptotic pathway and regulating the cell growth and hence diverting the essential energy for coping with salinity stress.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Brânquias/metabolismo , RNA Longo não Codificante/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Salino/genética , Transcriptoma , RNA Mensageiro/genética , Redes Reguladoras de Genes
10.
Environ Pollut ; 327: 121517, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990341

RESUMO

Poultry farming is a major livelihood in South and Southeast Asian economies where it is undergoing rapid intensification to meet the growing human demand for dietary protein. Intensification of poultry production systems is commonly supported by increased antimicrobial drug use, risking greater selection and dissemination of antimicrobial resistance genes (ARGs). Transmission of ARGs through food chains is an emerging threat. Here, we investigated transmission of ARGs from chicken (broiler and layer) litter to soil and Sorghum bicolor (L.) Moench plants based on field and pot experiments. The results demonstrate ARGs transmission from poultry litter to plant systems under field as well as experimental pot conditions. The most common ARGs could be tracked for transmission from litter to soil to plants were identified as detected were cmx, ErmX, ErmF, lnuB, TEM-98 and TEM-99, while common microorganisms included Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, and Vibrio cholerae. Using next generation sequencing and digital PCR assays we detected ARGs transmitted from poultry litter in both the roots and stems of S. bicolor (L.) Moench plants. Poultry litter is frequently used as a fertiliser because of its high nitrogen content; our studies show that ARGs can transmit from litter to plants and illustrates the risks posed to the environment by antimicrobial treatment of poultry. This knowledge is useful for formulating intervention strategies that can reduce or prevent ARGs transmission from one value chain to another, improving understanding of impacts on human and environmental health. The research outcome will help in further understanding the transmission and risks posed by ARGs from poultry to environmental and human/animal health.


Assuntos
Anti-Infecciosos , Aves Domésticas , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/análise , Solo , Galinhas , Farmacorresistência Bacteriana/genética , Esterco/análise , Genes Bacterianos
11.
Gene ; 864: 147294, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858189

RESUMO

Precise estimation of genome size (GS) is vital for various genomic studies, such as deciding genome sequencing depth, genome assembly, biodiversity documentation, evolution, genetic disorders studies, duplication events etc. Animal Genome Size Database provides GS of over 2050 fish species, which ranges from 0.35 pg in pufferfish (Tetraodon nigroviridis) to 132.83 pg in marbled lungfish (Protopterus aethiopicus). The GS of majority of the fishes inhabiting waters of Indian subcontinent are still missing. In present study, we estimated GS of 51 freshwater teleost (31 commercially important, 7 vulnerable and 13 ornamental species) that ranged from 0.58 pg in banded gourami (Trichogaster fasciata) to 1.92 pg in scribbled goby (Awaous grammepomus). Substantial variation in GS was observed within the same fish orders (0.64-1.45 pg in cypriniformes, 0.70-1.41 pg in siluriformes and 0.58-1.92 pg in perciformes). We examined the relationship between the GS, chromosome number and body length across all the fishes. Body length was found to be associated with GS, whereas no relationship was noticed between the GS and the chromosome number. The analysis using ancestral information revealed haploid chromosome number 25, 27 and 24 for the most recent common ancestor of cypriniformes, siluriformes and perciformes, respectively. The study led to generation of new records on GS of 43 fish species and revalidated records for 8 species. The finding is valuable resource for further research in the areas of fish genomics, molecular ecology and evolutionary conservation genetics.


Assuntos
Peixes-Gato , Cipriniformes , Perciformes , Animais , Tamanho do Genoma , Evolução Molecular , Peixes/genética , Cromossomos/genética , Genômica , Perciformes/genética , Peixes-Gato/genética , Cipriniformes/genética , Filogenia
12.
3 Biotech ; 13(1): 33, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36619823

RESUMO

In the course of time, scientific communities have a growing interest in understanding ethano medicines. The Putranjiva roxburghii, a native plant of the Indian Subcontinent is described as a "Child amulet tree" in Ayurveda. Based on the fact that this herbal medicine has an indispensable component of integrative medicine, the present study was planned to assess the effect of ethanolic dried extract of Putranjiva seeds on the motility of X and Y-bearing bovine spermatozoa. The in-vitro effect of seed extract diluted in S-TALP medium on bull semen has been evaluated by Computer Assisted Semen Analysis (CASA) shows a marked increase in the motility of spermatozoa. Motile and non-motile spermatozoa have been separated by glass wool column from the control as well as treated group. The X and Y-bearing sperm quantification have been carried out by droplet digital polymerase chain reaction (ddPCR). The extract didn't exert any differential effect on the motility and viability of X and Y chromosome-bearing spermatozoa. The transcriptome profiling (RNA-Seq) identified 93 differentially expressed genes between the extract treated and control group. It unveils the up-regulation of CATSPER, AKAP3, SPAG, ADAM1B, ADAM2 and ADAM32 genes that are involved in increasing sperm motility. Transcriptome profile also unveil the expression of ZAR1, CYP17A1, APPL2, HOXB4 and SP9 genes involved with embryonic development processes in Putranjiva extract-treated motile spermatozoa. The results envisaged the medicinal value of Putranjiva herb on increased fertility due to combinatory effect like increased sperm motility and favourableness on embryogenesis. The study ruled out the possibility of herbs having any biased effect on the selection of either male or female-bearing spermatozoa in the bull. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03452-4.

13.
Mol Genet Genomics ; 298(2): 361-374, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36575347

RESUMO

Rumen inhabiting Bacillus species possesses a high genetic potential for plant biomass hydrolysis and conversion to value-added products. In view of the same, five camel rumen-derived Bacillus strains, namely B. subtilis CRN 1, B. velezensis CRN 2, B. subtilis CRN 7, B. subtilis CRN 11, and B. velezensis CRN 23 were initially assayed for diverse hydrolytic activities, followed by genome mining to unravel the potential applications. CRN 1 and CRN 7 showed the highest endoglucanase activity with 0.4 U/ml, while CRN 23 showed high ß-xylosidase activity of 0.36 U/ml. The comprehensive genomic insights of strains resolve taxonomic identity, clusters of an orthologous gene, pan-genome dynamics, and metabolic features. Annotation of Carbohydrate active enzymes (CAZymes) reveals the presence of diverse glycoside hydrolases (GH) GH1, GH5, GH43, and GH30, which are solely responsible for the effective breakdown of complex bonds in plant polysaccharides. Further, protein modeling and ligand docking of annotated endoglucanases showed an affinity for cellotrioside, cellobioside, and ß-glucoside. The finding indicates the flexibility of Bacillus-derived endoglucanase activity on diverse cellulosic substrates. The presence of the butyrate synthesis gene in the CRN 1 strain depicts its key role in the production of important short-chain fatty acids essential for healthy rumen development. Similarly, antimicrobial peptides such as bacilysin and non-ribosomal peptides (NRPS) synthesized by the Bacillus strains were also annotated in the genome. The findings clearly define the role of Bacillus sp. inside the camel rumen and its potential application in various plant biomass utilizing industry and animal health research sectors.


Assuntos
Bacillus , Celulase , Animais , Bacillus subtilis/genética , Camelus , Hidrólise , Rúmen , Biomassa , Celulase/metabolismo , Bacillus/genética
14.
Gene ; 852: 147070, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36427680

RESUMO

Breast and ovarian cancers are the most common cancer types in females worldwide and in India. Patients with these cancers require an early diagnosis which is essential for better prognosis, treatment and improved patient survival. Recently, the utilization of next-generation sequencing (NGS)-based screening has accelerated molecular diagnosis of various cancers. In the present study, we performed whole-exome sequencing (WES) of 30 patients who had a first or second-degree relative with breast or ovarian cancer and are tested negative for BRCA1/2 or other high and moderate-risk genes reported for HBOC. WES data from patients were analyzed and variants were called using bcftools. Functional annotation of variants and variant prioritization was performed by Exomiser. The clinical significance of variants was determined as per ACMG classification using Varsome tool. The functional analysis of genes was determined by STRING analysis and disease association was determined by open target tool. We found novel variants and gene candidates having significant association with HBOC conditions. The genes identified by exomiser (phenotype score > 0.75) are associated with various biological processes such as DNA integrity maintenance, transcription regulation, cell cycle regulation, and apoptosis. Our findings provide novel and prevalent gene variants associated with the HBOC condition in the West Indian population which could be further studied for early diagnosis and better prognosis of HBOC.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Proteína BRCA1/genética , Éxons , Índia , Neoplasias da Mama/genética , Predisposição Genética para Doença
15.
Curr Res Microb Sci ; 3: 100163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518165

RESUMO

Cumin (Cuminum cyminum L.; Jeera) is a popular herbal seed spice used in culinary preparation in India. Gujarat and Rajasthan are the largest producer states of cumin seeds from India, while India is also the largest supplier and exporter of cumin across the globe. However, production of cumin is suffering from loss of crop production due to the plant pathogen infections, especially from Fusarium oxysporium sp. Rhizomicrobiome is the key modulator of plant health, revitalizing nutrients and disease response against plant pathogens. The secretion of different metabolites such as root exudates plays an important role in host plant rhizosphere microbial interactions influencing the plant health, growth and development, nutrient acquisition, and disease resistance. Therefore, in this research study, we have examined the microbial diversity from the healthy and fungal infected rhizosphere samples of the three different Gujarat Cumin (GC-2, GC-3, and GC-4) varieties using 16S ribosomal RNA (rRNA) gene sequencing on Ion Torrent S5 sequencing platform. The findings revealed the major dominant family represented by Bacillaceae, Solibacteraceae, Nostocaceae, Paenibacillaceae, Scytonemataceae, and Halothiobacillaceae, while at genera level of taxonomic abundance were represented by Bacillus, Candidatus Solibacter, Synechococcus, Nostoc, Anabaena, and Oscillatoria. The research findings should enhance our understanding of healthy and infected plant rhizosphere microbiome for better crop productivity, disease resistance and management of the crop varieties against plant pathogens.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36361271

RESUMO

Since December 2019, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been spreading worldwide, triggering one of the most challenging pandemics in the human population. In light of the reporting of this virus in domestic and wild animals from several parts of the world, a systematic surveillance study was conceptualized to detect SARS-CoV-2 among species of veterinary importance. Nasal and/or rectal samples of 413 animals (dogs n= 195, cattle n = 64, horses n = 42, goats n = 41, buffaloes n = 39, sheep n = 19, cats n = 6, camels n = 6, and a monkey n = 1) were collected from different places in the Gujarat state of India. RNA was extracted from the samples and subjected to RT-qPCR-based quantification of the target sequences in viral nucleoprotein (N), spike (S), and ORF1ab genes. A total of 95 (23.79%) animals were found positive, comprised of n = 67 (34.35%) dogs, n= 15 (23.43%) cattle, and n = 13 (33.33%) buffaloes. Whole SARS-CoV-2 genome sequencing was done from one sample (ID-A4N, from a dog), where 32 mutations, including 29 single-nucleotide variations (SNV) and 2 deletions, were detected. Among them, nine mutations were located in the receptor binding domain of the spike (S) protein. The consequent changes in the amino acid sequence revealed T19R, G142D, E156-, F157-, A222V, L452R, T478K, D614G, and P681R mutations in the S protein and D63G, R203M, and D377Y in the N protein. The lineage assigned to this SARS-CoV-2 sequence is B.1.617.2. Thus, the present study highlights the transmission of SARS-CoV-2 infection from human to animals and suggests being watchful for zoonosis.


Assuntos
COVID-19 , Bovinos , Animais , Humanos , Cães , Cavalos , Ovinos , COVID-19/epidemiologia , SARS-CoV-2/genética , Búfalos , Pandemias , Mutação
17.
Front Physiol ; 13: 991366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311223

RESUMO

The increasing salinization of freshwater resources, owing to global warming, has caused concern to freshwater aquaculturists. In this regard, the present study is aimed at economically important freshwater fish, L. rohita (rohu) adapting to varying degrees of salinity concentrations. The RNA-seq analysis of kidney tissue samples of L. rohita maintained at 2, 4, 6, and 8 ppt salinity was performed, and differentially expressed genes involved in various pathways were studied. A total of 755, 834, 738, and 716 transcripts were downregulated and 660, 926, 576, and 908 transcripts were up-regulated in 2, 4, 6, and 8 ppt salinity treatment groups, respectively, with reference to the control. Gene ontology enrichment analysis categorized the differentially expressed genes into 69, 154, 92, and 157 numbers of biological processes with the p value < 0.05 for 2, 4, 6, and 8 ppt salinity groups, respectively, based on gene functions. The present study found 26 differentially expressed solute carrier family genes involved in ion transportation and glucose transportation which play a significant role in osmoregulation. In addition, the upregulation of inositol-3-phosphate synthase 1A (INO1) enzyme indicated the role of osmolytes in salinity acclimatization of L. rohita. Apart from this, the study has also found a significant number of genes involved in the pathways related to salinity adaptation including energy metabolism, calcium ion regulation, immune response, structural reorganization, and apoptosis. The kidney transcriptome analysis elucidates a step forward in understanding the osmoregulatory process in L. rohita and their adaptation to salinity changes.

18.
Microb Pathog ; 173(Pt A): 105829, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252893

RESUMO

The bacterial co-infections in SARS-CoV-2 patients remained the least explored subject of clinical manifestations that may also determine the disease severity. Nasopharyngeal microbial community structure within SARS-CoV-2 infected patients could reveal interesting microbiome dynamics that may influence the disease outcomes. Here, in this research study, we analyzed distinct nasopharyngeal microbiome profile in the deceased (n = 48) and recovered (n = 29) COVID-19 patients and compared it with control SARS-CoV-2 negative individuals (control) (n = 33). The nasal microbiome composition of the three groups varies significantly (PERMANOVA, p-value <0.001), where deceased patients showed higher species richness compared to the recovered and control groups. Pathogenic genera, including Corynebacterium (LDA score 5.51), Staphylococcus, Serratia, Klebsiella and their corresponding species were determined as biomarkers (p-value <0.05, LDA cutoff 4.0) in the deceased COVID-19 patients. Ochrobactrum (LDA score 5.79), and Burkholderia (LDA 5.29), were found in the recovered group which harbors ordinal bacteria (p-value <0.05, LDA-4.0) as biomarkers. Similarly, Pseudomonas (LDA score 6.19), and several healthy nasal cavity commensals including Veillonella, and Porphyromonas, were biomarkers for the control individuals. Healthy commensal bacteria may trigger the immune response and alter the viral infection susceptibility and thus, may play important role and possible recovery that needs to be further explored. This research finding provide vital information and have significant implications for understanding the microbial diversity of COVID-19 patients. However, additional studies are needed to address the microbiome-based therapeutics and diagnostics interventions.


Assuntos
COVID-19 , Microbiota , Humanos , SARS-CoV-2 , Nasofaringe/microbiologia , Bactérias
19.
Gene ; 846: 146868, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36075329

RESUMO

Lignocellulosic biomass is a rich source of feed for cattle. Amongst them, coconut coir may be the potential source of feed supplements. To assess, the effect of various concentrations of coconut coir (0 %, 21 % and 40 %) as a feed supplement on the rumen microbiome of cattle (Kankrej breed), a metagenomic (16S rRNA gene amplicon and shotgun sequencing) study was performed. The Alpha diversity estimation from the amplicon study suggested that the group of cattle fed food without the coconut coir has a higher number of genera than the cattle fed with mixed ration. Within the liquid fraction, bacterial phyla Bacteroidetes were abundant followed by Firmicutes and Fibrobacteres, whereas the proportion of Tenericutes, TM7, SRI, Verrucomicrobia, Lentisphaerae, and Elusimicrobia had decreased with the rise in the coir concentration. While within the solid fractions, the proportion of Elusimicrobia increased, but the count of Bacteriodetes, Firmicutes, Fibrobacteres Tenericutes, TM7, SRI, Verrucomicrobia, and Lentisphaerae decreased with an increase in coir percentages. The results obtained from shotgun sequencing show similar results for bacterial diversity. The functions associated with carbohydrate metabolism were abundant in both the treatments as compared to the control. Functions related to glycoside hydrolases, glycosyltransferases and carbohydrate-binding modules were abundant in both the treatments as compared to control. Thus, the study indicates that the microbiome does alter after feeding coir as a supplement and may be used as feed for cattle.


Assuntos
Lignina , Rúmen , Ração Animal , Animais , Bactérias , Carboidratos , Bovinos , Dieta , Glicosídeo Hidrolases , Glicosiltransferases , Lignina/análogos & derivados , Melhoramento Vegetal , RNA Ribossômico 16S/genética
20.
Environ Pollut ; 310: 119757, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853573

RESUMO

Wastewater-based genomic surveillance can identify a huge majority of variants shed by the infected individuals within a population, which goes beyond genomic surveillance based on clinical samples (i.e., symptomatic patients only). We analyzed four samples to detect key mutations in the SARS-CoV-2 genome and track circulating variants in Ahmedabad during the first wave (Sep/Nov 2020) and before the second wave (in Feb 2021) of COVID-19 in India. The analysis identified a total of 34 mutations in the spike protein across samples categorized into 23 types. The spike protein mutations were linked to the VOC-21APR-02; B.1.617.2 lineage (Delta variant) with 57% frequency in wastewater samples of Feb 2021. The key spike protein mutations were T19R, L452R, T478K, D614G, & P681R and deletions at 22029 (6 bp), 28248 (6 bp), & 28271 (1 bp). Interestingly, these mutations were not seen in the samples from Sep/Nov 2020 but did appear before the massive second wave of COVID-19 cases, which in India started in early April 2021. In fact, genetic traces of the Delta variant were found in samples of early Feb 2021, more than a month before the first clinically confirmed case of this in March 2021 in Ahmedabad, Gujarat. The present work describes the circulating of SARS-CoV-2 variants in Ahmedabad and confirms the consequential value of wastewater surveillance for the early detection of variants of concerns (VOCs). Such monitoring must be included as a major component of future health protection systems.


Assuntos
COVID-19 , SARS-CoV-2 , Genoma Viral , Humanos , Mutação , Glicoproteína da Espícula de Coronavírus , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...